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ABSTRACT
Network embedding methods have been widely and successfully

used in network-based applications such as node classification

and link prediction. However, an ideal network embedding should

not only be useful for machine learning, but interpretable. We

introduce a spectral embedding method for a network, its Spectral
Point, which is basically the first few spectral moments of a network.

Spectral moments are interpretable, where we prove their close

relationships to network structure (e.g. number of triangles and

squares) and various network properties (e.g. degree distribution,

clustering coefficient, and network connectivity). Using spectral

points, we introduce a visualizable and bounded 3D embedding

space for all possible graphs, in which one can characterize various

types of graphs (e.g., cycles), or real-world networks from different

categories (e.g., social or biological networks). We demonstrate that

spectral points can be used for network identification (i.e., what

network is this subgraph sampled from?) and that by using just the

first few moments one does not lose much predictive power.
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1 INTRODUCTION
Networks have been widely used for modeling complex data from

science (e.g. interaction between proteins in biology [37]), engi-

neering (e.g. power grids [24]), and our daily life (e.g. friendships in

a social network [2]). An appropriate representation of networks

plays a critical role in studying networks. An ideal network rep-

resentation should not only be informative for machine learning

use, but also be able to help users understand the network. Recent

advancements in network representation such as node (or graph)
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Figure 1: The Zoo of Networks

embedding techniques aim to learn a mapping from a graph, or its

nodes, to points in a low-dimensional vector space [12, 13, 29, 36].

These methods have been successful in many network-based ap-

plications. However, these learned representations are often dif-

ficult to understand, mainly because of two reasons: (1) node (or

graph) embedding techniques map nodes (or graphs) to points in

a k-dimensional space, but no interpretation is often provided for

each of these k dimensions. Particularly, one can hardly get exact

structural properties from these k-dimensional vectors, for example,

are there many triangles in the network? Or, is it a well-connected

network?; (2) in practical machine learning tasks, the number of

dimensions k is often set to a number such as 128 or 256. Though

this k-dimensional space is a relatively low-dimensional compared

to the high-dimensional network data (i.e., adjacency matrix), it

is impractical for users to search among all these k dimensions

to gain some insights from the network. Here, our goal is to ad-

dress such issues by proposing an interpretable, visualizable, and

compact embedding space for networks: “a zoo of networks”, where
one can easily characterize networks based on their locations in this

zoo, similar to how animals are grouped and located in different

regions of a zoo. Figure 1 illustrates a big picture of this zoo of

networks obtained using the method developed in this paper. In the

figure, we plot the embeddings of real-world networks from three

different categories: Social Networks, Collaboration Networks and

Road Networks, and also plot various types of graphs including

complete graphs, cycles, complete bipartite graphs, and wheels of

different sizes (the number of nodes n are mostly above 100).
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To build such an embedding space, we need the network embed-

ding method to meet the following criteria: (1) Easy to visualize.
We want an embedding space that can be easily visualized, so a 3D

embedding of networks is needed; (2)Capture network structure.
The embedding values should help users understand the network

structure; (3) Capture network properties. The embedding val-

ues should shed light on different network properties such as the

degree distribution or network connectivity; and (4) Easy and fast
to compute. The method should be scalable for large networks.

Spectral graph theory can help satisfy these constraints.

Spectral graph theory connects the structure of a network to

the eigenvalues and eigenvectors of its associated matrices such

as the adjacency matrix or the Laplacian. The extreme eigenval-

ues and associated eigenvectors are often used by various spectral

methods. For example, the ratio between the largest and smallest

eigenvalues can help estimate the chromatic number [7, 14]; the

second-smallest eigenvalue of a graph Laplacian is related to graph

connectivity and the associated eigenvector is used for spectral

clustering [23]. Recently, more attention is paid to the overall dis-

tribution of eigenvalues, also known as the spectral density of the

graph. Dong et al. [9] use methods from condensed matter physics

to study spectral densities in networks, and they show that the

spectral density is a practical tool to analyze large real-world net-

works. Inspired by the strong power of spectral density analysis,

we aim to find a succinct way to represent the spectral density, so

as to represent the network. Naturally, we propose to use spectral

moments, as in statistics, moments are often used to capture the

shape of a distribution. Specifically, we use the spectral moments

of the random walk transition matrix as the embedding method, as

(1) they have a very clear meaning, which is the expected return

probability of a random walk; (2) these spectral moments, as we

will see in the rest of the paper, are closely related to the network

structure and various network properties such as the degree distri-

bution and clustering coefficient; (3) using a few of these spectral

moments (truncated moments), more specifically, the second m2,

thirdm3, and fourthm4 moments (the first moment is 0 as we only

look into undirected graphs without self-loops), we can have a

3D embedding of a network that can be visualized. We will show

that the error of using truncated spectral moments is bounded. We

denote this 3D embedding as the spectral point of the network; (4)
by definition, these spectral moments are all between 0 to 1, so we

can have a compact embedding space for all possible graphs, which

is a 1 × 1 × 1 cube (see Figure 1). The points in Figure 1 are spectral

points. In Section 5, we will go into further details on how graphs

can be represented using spectral points.

Overall, our contributions are mainly the following:

1. Network Embedding with Spectral Moments.We introduce

Spectral Point, a 3D network embedding method that uses the trun-

cated spectral moments of the network. Spectral points have the

following advantages: (i) each dimension is closely related to the

network structure and various network properties, so it is easy to

interpret; (ii) the embedding space can help characterize various

types of networks; (iii) the embedding space provides easy network

visualization; and (iv) the embeddings are easy to compute.

2. Spectral Moments and Network Structure. To the best of

our knowledge, we are the first to study relationship between the

spectral moments of the random walk transition matrix (more im-

portantly and equivalently, the spectral moments of the normalized

Laplacian matrix) and network structure. We connect the spectral

moments to basic subgraphs such as triangles and squares.

3. Spectral Moments and Network Properties.We find that the

spectral moments provide various bounds on network properties

such as the degree distribution and the global clustering coefficient.

We define a measure that assesses global connectivity using the

spectral moments, and we prove the relationship between the spec-

tral moments of a network and those of its connected components.

4. Representing Various Graph Types. We mathematically de-

rive spectral moments for various types of graphs such as complete

graphs, cycles, star graphs, and complete bipartite graphs. For k-
regular graphs, we derive the exact value for the second moment

and the range of values that the third and fourth moments can take.

5. Representing Real-World Graphs.We compute the spectral

moments of real-world graphs from various categories and show

that their structure and properties identified in past research is

captured by spectral moments. We show that spectral moments can

help get a quick understanding of a real-world network at hand.

6. Spectral Network Identification. We demonstrate that spec-

tral moments can be used for network identification, i.e., identifying

the source of an anonymized graph. Our results indicate that trun-

cated spectral moments do not lose much predictive power.

The rest of the paper is organized as follows. We first detail

the preliminaries and notations used in the paper in Section 2. In

Section 3, we provide proofs on the relationship between spectral

moments and network structure, and Section 4 demonstrates the

relationship between spectral moments and network properties. In

Section 5, we analyze special graphs and real-world networks using

their spectral moments. In Section 6, we use spectral moments for

network identification. After reviewing additional related work in

Section 7, we conclude the paper in Section 8.

2 PRELIMINARIES AND NOTATION
For an undirected graphG = (V , E)with verticesV = {v1,v2, ...,vn }
and edges E ⊆ V ×V , its adjacency matrix A ∈ Rn×n has Ai j = 1

if (i, j) ∈ E and otherwise, Ai j = 0. The degree matrix D ∈ Rn×n

is a diagonal matrix with node degrees on its diagonal, i.e. Dii =∑n
j=1Ai j . Various properties of graph G (e.g., connectivity or cuts)

can be identified using matrices defined in terms of A and D. The

normalized Laplacian ofG is the matrix L = I−D− 1

2AD− 1

2 . The spec-

trum of a matrix is the set of its eigenvalues. The normalized Lapla-

cian has a bounded spectrum, i.e. 0 = µ1 ≤ µ2 ≤ · · · ≤ µn−1 ≤ µn ≤

2, where µi ’s are the eigenvalues of L. The transition matrix of the

random walk on G is matrix P = AD−1
. As P is a stochastic matrix,

its spectrum is also bounded: 1 = λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn ≥ −1,

where λi ’s are the eigenvalues of P . As P is similar toD− 1

2AD− 1

2 (i.e.,

they have the same eigenvalues), it is easy to find the relationship

between the eigenvalues of P and L: λi = 1 − µi , for 1 ≤ i ≤ n.
In this work, we denote the ℓ-th spectral momentmℓ of a graph

G using the spectrum of its random walk transition matrix P ,mℓ =

E(λℓ), as 1

n
∑n
i=1 λi

ℓ = E(λℓ). We look at the relationship between

the spectral moments and network structure and use the first few

spectral moments to represent networks.
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3 RELATIONSHIP BETWEEN SPECTRAL
MOMENTS AND NETWORK STRUCTURE

In this section, we aim to see how spectral moments are related to

network structure. As we only look into undirected graphs without

self-loops, it is easy to see that the first spectral momentm1 is 0.

Therefore, we start with the second spectral moment.

3.1 Second Spectral Moment
Theorem 3.1. The 2nd spectral momentm2 of P is

m2 = E(λ
2) = E(1/l),

where l follows p(l |k), the probability that a random neighbor of a
node with degree k has degree l .

Proof. The ℓ-th spectral moment of P can be viewed as the

expected return probability of an ℓ-step random walk starting from

node i , where i is chosen uniformly at random from all the nodes [8].

For any node i , its return probability of a 2-step random walk is

equal to

∑
j :j∼i

1

di ·dj
, where di and dj are the degrees of nodes i

and j , respectively, and j ∼ i means that j is a neighbor of i . Hence,

the 2
nd

spectral moment of P is equal to Ei ∈V (
∑
j :j∼i

1

di ·dj
), and

Ei ∈V (
∑
j :j∼i

1

di · dj
) = Ei ∈V (

1

di
·
∑
j :j∼i

1

dj
)

= Ei ∈V (
1

di
· di · Ej :j∼i (

1

dj
))

= Ei ∈V (Ej :j∼i (
1

dj
)).

Note that di follows the degree distribution of the graph p(k),
and dj follows the conditional degree distribution p(l |k) as j is
constrained to be a neighbor of i , so

Ei ∈V (Ej :j∼i (
1

dj
)) = Ei ∈V (

∑
dj

1

dj
· p(l = dj |k = di )) (1)

=
∑
di

p(k = di ) ·
∑
dj

1

dj
· p(l = dj |k = di ) (2)

=
∑
di

∑
dj

p(k = di ) ·
1

dj
· p(l = dj |k = di ) (3)

=
∑
di

∑
dj

1

dj
· p(l = dj ,k = di ) (4)

= E(
1

dj
). (5)

□

Note that in Theorem 3.1, p(l,k) is the joint degree distribution

of nodes (k) and their neighbors (l) and the 2
nd

spectral moment

is E( 1

dj
) under this distribution. This joint distribution is not sym-

metric, i.e., p(l = dj ,k = di ) , p(l = di ,k = dj ), and can be

cumbersome to compute; hence, the following theorem states the

connection between the 2
nd

spectral moment P and the joint degree

distribution p(di ,dj ), which is symmetric.

Theorem 3.2. The 2nd spectral momentm2 of P is

m2 = E(λ
2) = E(di )E(

1

didj
),

where E(di ) denotes the average degree in the graph and didj follows
the joint degree distribution p(di ,dj ): the probability that a node with
degree di is connected to another node with degree dj .

Proof. Denote the joint degree distribution as

p(di ,dj ) =
ndi ,dj

E(di )n
, (6)

where ndi ,dj is the number of edges between nodes with degree

di and nodes with degree dj , n is the total number of nodes in the

graph, and E(di ) is the average degree. Let ndi denote the number

of nodes with degree di . Then, p(l = dj ,k = di ) can be stated as

p(l = dj ,k = di ) = p(l = dj |k = di )p(k = di ) (7)

=
ndi ,dj

dindi
p(k = di ) (8)

=
p(di ,dj )E(di )n

dindi
p(k = di ) (9)

=
p(di ,dj )E(di )

dip(k = di )
p(k = di ) (10)

=
p(di ,dj )E(di )

di
, (11)

using which Equation (4) can be restated as∑
di

∑
dj

1

dj
· p(l = dj ,k = di ) =

∑
di

∑
dj

1

dj
·
p(di ,dj )E(di )

di
(12)

= E(di )E(
1

didj
). (13)

□

One can interpret Theorem 3.2 in this way: the expected return

probability of a 2-step random walk is equal to (I) the average

return probability through an edge, multiplied by (II) the average

number of edges a node has, as
1

didj
is the return probability of a

2-step random walk through a specific edge linking two nodes with

degrees di and dj , respectively, and E(
1

didj
) is the average return

probability over all edges. This observation motivates us to extend

Theorem 3.2 to higher moments.

3.2 Third Spectral Moment
Theorem 3.3. The 3rd spectral momentm3 of P is

m3 = E(λ
3) = 2E(∆i )E(

1

dhdidj
),

where E(∆i ) is the average number of triads a node is in and dhdidj
follows the joint degree distribution of triads p(dh,di ,dj ): the proba-
bility that a triad is formed by nodes with degrees dh , di , and dj .

Proof. As mentioned, the 3
rd

spectral moment of P can be

viewed as the expected return probability of a 3-step random walk,

which is equal to the summation of the return probability of a 3-step

random walk starting from any node i divided by the number of

nodes. Assume that nodes h, i , and j are connected to each other

and form a triad. The triad will increase the overall return prob-

ability by 6
1

dhdidj
as it includes 6 closed walks: h → i → j → h,

h → j → i → h, and so on. Denote ∆ as the total number of triads
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Figure 2: Structures related to the 4th spectral moment of P .

in the graph, and there are ∆ ·p(dh,di ,dj ) triads with nodes having

degree dh,di and dj . Therefore,

m3 = E(λ
3) =

∑
dh ,di ,dj

6

dhdidj
· ∆ · p(dh,di ,dj )

n
. (14)

By definition, E(∆i ) =
3∆
n , so

m3 = 2E(∆i )E(
1

dhdidj
). (15)

□

3.3 Higher-Order Spectral Moments
The proof for Theorem 3.3 can be extended to a general case:

Theorem 3.4. The ℓ-th spectral momentmℓ of P is

mℓ = E(λ
ℓ) = E(CWℓ,i )E(

1

d1d2 . . .dℓ−1dℓ
),

where E(CWℓ,i ) denotes the average number of closed walks of length
ℓ a node is in and d1d2 . . .dℓ−1dℓ follows the joint degree distribution
of closed walk of length ℓ formed by nodes with degrees d1, d2, . . . , dℓ .

Proof. The proof is straightforward:

E(λℓ) =
CWℓ E(

1

d1d2 ...dℓ−1dℓ
)

n
(16)

= E(CWℓ,i )E(
1

d1d2 . . .dℓ−1dℓ
), (17)

where CWℓ is the total number of closed walks of length ℓ. □

Basically, when ℓ is small, we can connect the ℓ-th spectral

moment of P with the local structure of the graph. Next, we look

at the case of ℓ = 4.

Theorem 3.5. The 4th spectral momentm4 of P is

m4 = E(λ
4) = (E(di ) + 4E

(
di
2

)
+ 2E(□i ) )E(

1

didjdkdl
),

where E(di ) is average degree, E(□i ) is the average number of squares
a node is in, anddidjdkdl follows the joint degree distribution of closed
walks of length 4 formed by nodes with degrees di , dj , dk , dl .

Proof. Figure 2 provides the three graph structures that result

in closed walks of length 4: an edge, a wedge, and a square. Each

edge contributes 2 closed walks; each wedge adds another 4 closed

walks (without considering the walks that go through only one

edge); similarly, each square contributes additional 8 closed walks.

Let |E | denote the number of edges, denote the number of wedges,

and □ denote the number of squares in the graph. Hence,

E(CW4,i ) =
2|E | + 4 + 8□

n
. (18)

As E(di ) =
2 |E |
n , =

∑
di

(di
2

)
ndi = n E

(di
2

)
so

4

n = 4E
(di
2

)
, and

E(□i ) =
4□
n , using Theorem 3.4, the theorem is proved. □

4 RELATIONSHIP BETWEEN SPECTRAL
MOMENTS AND NETWORK PROPERTIES

4.1 Degree Distribution
Degree distribution plays a vital role in network analysis. Different

degree distributions have helped define different network families.

Perhaps the most well-studied network family with connections to

real-world networks are scale-free networks that exhibit a power

law degree distribution, at least asymptotically [3, 5]. Degree dis-

tribution is often used to assess how well a network model fits

real-world networks. Here, we look into the relationship between

the spectral moments and the degree distribution, and we prove

that the degree distribution helps bound the spectral moments.

Theorem 4.1. The 2nd spectral momentm2 of P is lower bounded
by the degree distribution’s expectation E(di ) and variance Var(di ):

m2 ≥
E3(di )

(E2(di ) + Var(di ))2
.

Proof. From Theorem 3.2, we have m2 = E(di )E(
1

didj
). By

Jensen’s inequality, E( 1

didj
) ≥ E2( 1√

didj
) ≥ 1

E2(
√
didj )

, and

E(
√
didj ) ≤ E(

di + dj

2

) =

∑
(i , j)∈E (di + dj )

2|E |
(19)

=

∑
i d

2

i
2|E |

(as each di gets counted di times) (20)

=
n E(d2i )

2|E |
=
E(d2i )

E(di )
. (21)

Therefore, E( 1

didj
) ≥

E2(di )
E2(d2

i )
and m2 ≥

E3(di )
E2(d2

i )
. As E(d2i ) =

E2(di ) + Var(di ),m2 ≥
E3(di )

(E2(di )+Var(di ))2
. □

In Theorem 4.1, if Var(di ) = 0, the bound is tight:m2 =
1

E(di )
. The

bound can be stated asm2 ≥
E3(di )

(E2(di )+Var(di ))2
= 1

E(di )+
2Var(di )
E(di )

+
Var

2(di )
E3(di )

.

Hence, given a fixed average degree E(di ), a smaller degree vari-

ance Var(di ) leads to a greater lower bound form2. In statistics, the

value
Var(di )
E(di )

is defined as the index of dispersion D for the degree

distribution, so we can rewrite the bound asm2 ≥ 1

E(di )+2D+ D2

E(di )

.

4.2 Clustering Coefficient
The clustering coefficient helps measure the degree to which nodes

in a graph tend to cluster together. Clustering coefficient is specifi-

cally used to analyze transitivity (triangles) in an undirected graph.

Theorem 3.3 states thatm3 = 2E(∆i )E(
1

dhdidj
), indicating thatm3

is closely related to the number of triangles. Next, we prove thatm3

and the degree distribution’s expectation and variance (E(di ) and
Var(di )) provide a lower bound for the global clustering coefficient

C . Also,m3 is upper bounded by C , E(di ) and Var(di ).

Corollary 4.1.1. The 3rdmomentm3 is upper bounded by 1

4
E(∆i ).

Proof. Because any node in a triangle has a degree of at least 2,

E( 1

dhdidj
) ≤ 1

8
. Therefore,m3 = 2E(∆i )E(

1

dhdidj
) ≤ 1

4
E(∆i ). □
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Theorem 4.2. Given the 3rd spectral momentm3 of P , E(di ) and
Var(di ), the global clustering coefficient C can be lower bounded as

C ≥
8m3

E2(di ) − E(di ) + Var(di )
.

Proof. Starting from the definition of clustering coefficient C:

C =
|Closed Paths of Length 2|

|Paths of Length 2|
=

∆ × 6∑
i 2

(di
2

) = 2n E(∆i )

2n E
(di
2

) (22)

=
E(∆i )

E
(di
2

) (23)

Using Corollary 4.1.1, we getm3 ≤ C
4
E
(di
2

)
, so C ≥

4m3

E (di
2
)
. As

E
(di
2

)
=
E(d2

i )−E(di )
2

=
E2(di )−E(di )+Var(di )

2
, the proof is complete. □

Therefore, given fixed E(di ) and Var(di ), whenm3 is large,C has

a greater lower bound. Also,m3 can be upper bounded by C , E(di ),

and Var(di ) using Theorem 4.2:m3 ≤ C
8
(E(di )

2−E(di )+Var(di )). So,
given fixed E(di ) and Var(di ), when the global clustering coefficient

is small,m3 has a smaller upper bound, which makes sense as the

number of closed walk of length 3 relies on the number of triangles.

4.3 Connectivity
Becausemℓ is the expected return probability of an ℓ-step random

walk, it is equal to the fraction of walks of length ℓ that are closed.

Hence, the graph is globally well-connected whenmℓ is small, as

it is more likely to have a walk which travels far away from the

starting node. On the other hand, a largemℓ indicates that more

walks are closed and it is difficult to travel from a node to another

one which is far away. Here, we link the spectral moments to graph

connectivity by extending the Estrada index [10]. The Estrada index

of a graph G is defined as EE(G) =
∑n
j=1 e

µ j
, where µ j ’s are the

eigenvalues of the adjacency matrix A. As EE(G) = trace(eA) =∑∞
k=0

trace(Ak )
k ! , the Estrada index actually counts the number of

closed walks, discounting longer walks; hence, it is sometimes

used to measure the global connectivity of a graph. Therefore, we

propose a variation of the Estrada index using the random walk

transition matrix P , which we denote as EEP (G) =
∑n
j=1 e

λj =∑n
j=1 trace(e

P ) =
∑∞
k=0

trace(Pk )
k ! = n

∑∞
k=0

mk
k ! . Different from the

Estrada index, EEP (G) computes the expected return probability

of a random walk of any length, discounting longer walks. The

smaller the EEP (G) value, the more well-connected the graph G.

4.4 Connected Components
In Section 4.3, we discussed the spectral moments and network con-

nectivity. Here, we look into the relationship between the spectral

moments of a network and those of its connected components.

Theorem 4.3. Consider graph G = (V , E) with k connected com-
ponents G1,G2, . . . ,Gk−1,Gk . For each Gi = (Vi , Ei ), denote its ℓ-th
spectral moment asmi ,ℓ . Then, the ℓ-th spectral moment of G is the

weighted average ofmi ,ℓ ’s weighted by |Vi |’s, i.e.,mℓ =

∑
i |Vi |mi ,ℓ

|V |
.

Proof. The theorem can be proved in two ways, both of which

are straightforward. The first way is that one can view the transition

matrix of the random walk on G as a block matrix where each

block represents the transition matrix of a connected component.

The second way is that a walk starting from node i cannot reach
the nodes in other connected components, so the overall return

probability of an ℓ-step random walk is the weighted sum of the

expected return probability for each connected component. □

5 REPRESENTING NETWORKS WITH
SPECTRAL MOMENTS

The results in Sections 3 and 4 show that spectral moments of a

network are closely related to its structure and various properties.

As discussed, we propose to represent a graph as a point in the 3D

space using its truncated spectral moments: (m2,m3,m4), where

we denote this point as the spectral point of the graph.

5.1 Spectral Points of Various Types of Graphs
In this section, we first explore the spectral points of various types

of graphs including complete graphs, cycles, star graphs, complete

bipartite graphs Ka,b , and wheels, which as we will show their

spectral moments are functions of the number of nodes n. We

derive the spectral moments for all such graphs. Table 1 lists the

spectral moments of these graphs and the related information. We

observe that (1) For complete graphs, the three spectral moments

decreases when the number of nodes increases and when n → ∞

they all converge to 0; (2) For cycles, the spectral point is fixed

at (0.5, 0, 0.375), independent of n; (3) Star graphs and complete

bipartite graphs share the same spectral moments, as star graphs

are a special case of complete bipartite graph K1,n−1. Their third

spectral moment is 0 and the other two moments are
2

n . (4) For

wheels, the three spectral moments decreases when the number of

nodes increases and when n → ∞ they converge to (
2

9
, 0, 2

27
). We

vary n from 100 to 10,000 and we plot the spectral points of these

types of graphs in Figure 3. As expected, we find that (1) complete

graphs, stars, and complete bipartite graphs are lines converging

to (0, 0, 0); (2) wheels form a line which converges to (
2

9
, 0, 2

27
).

Next, we look into spectral points of the k-regular graphs (k > 0),

where each node has the same degree k . We find that the three

spectral moments of k-regular graphs are upper bounded by
1

k .

Theorem 5.1. For a k-regular graph, (m2,m3,m4) satisfies

m2 =
1

k
; (24)

m3 ≤
k − 1

k2
<

1

k
; (25)

m4 ≤
1

k
. (26)

Proof. Form2: as E(di ) = k and E( 1

didj
) = 1

k2
,m2 =

1

k .

For m3: clearly, E(
1

didjdk
) = 1

k3
. As each node has k neigh-

bors, it is in at most

(k
2

)
triangles, i.e., E(∆i ) ≤

(k
2

)
. Hence,m3 =

2E(∆i )E(
1

didjdk
) ≤ k−1

k2
< 1

k .

Form4: E(
1

didjdkdl
) = 1

k4
, and based on Theorem 4 in [6], the

total number of closed walks of length 4,CW4 ≤ nk3, so E(CW4,i ) ≤

k3. Using Theorem 3.4,m4 ≤ 1

k . □

Corollary 5.1.1. The spectral points for all k-regular graphs with
k ≥ 2 are within the [0, 0.5] × [0, 0.5] × [0, 0.5] cube.
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Table 1: Spectral Moments of Various Types of Graphs with n nodes (n > 5)
Graphs E(di ) E( 1

didj
) 2nd momentm2 E(∆i ) E( 1

didjdk
) 3rd momentm3 E

(di
2

)
E(□i ) E( 1

didjdkdl
) 4th momentm4

Complete Graphs n − 1
1

(n−1)2
1

n−1
(n−1

2

)
1

(n−1)3
n−2

(n−1)2
(n−1

2

)
3

(n−1
3

)
1

(n−1)4
n2−3n+3
(n−1)3

Cycles 2
1

4

1

2
0 NA 0 1 0

1

16

3

8

Star Graphs 2(n−1)
n

1

n−1
2

n 0 NA 0
(n−1)(n−2)

2n 0
1

(n−1)2
2

n

Complete Bipartite Graph Ka,b
2ab
a+b

1

ab
2

a+b =
2

n 0 NA 0
ab(a+b−2)
2(a+b)

4(a
2
)(b

2
)

a+b
1

a2b2

2

a+b =
2

n

Wheels 4(n−1)
n

n+2
18(n−1)

2(n+2)
9n

3(n−1)
n

1

9(n−1)
2

3n
(n−1)(n+4)

2n
4(n−1)

n
1

27(n−1)
2n+20
27n
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Figure 3: Spectral Moments of Various Types of Graphs

5.2 Representing Real-World Networks
Next, we move to real-world networks. We first introduce the

datasets used in our experiments.

5.2.1 Datasets. For our experiments, we use twenty real-world

networks from four general network categories: social networks,

collaboration networks, road networks, and biological networks.

The data statistics are in Table 2.

Social Networks: In total, we have eight social networks.

(1) Brightkite [19]: was a location-based social networking site

where users shared their locations by checking-in.

(2) Flixster [38]: a social movie site allowing users to buy, rent, or

watch movies, share ratings, and find new movies.

(3) Gowalla [19]: similar to Brightkite, was a location-based social

networking site where users shared their locations.

(4) Hyves [38]: the most popular social networking site in the

Netherlands with mainly Dutch visitors. It competes with sites

such as Facebook and MySpace in that country.

(5) Livejournal [40]: a social network where users can keep a blog

or journal. Users can form friendship or follow others. Here,

edges represent friendships (undirected).

Table 2: Dataset Statistics
Type Network |V | = n |E | =m

Average

Degree

Density

(×10−4)

Average

Clustering Coefficient

Social

Networks

Brightkite 58,228 214,078 7.353 1.263 0.1723

Flixster 2,523,386 7,918,801 6.276 0.025 0.0834

Gowalla 196,591 950,327 9.668 0.246 0.2367

Hyves 1,402,673 2,777,419 3.960 0.028 0.0448

Livejournal 3,017,286 85,654,976 56.78 0.188 0.1196

MySpace 854,498 5,635,296 13.19 0.154 0.0433

Orkut 3,072,441 117,185,083 76.28 0.248 0.1666

YouTube 1,134,890 2,987,624 5.265 0.046 0.0808

Collaboration

Networks

Astro-Ph 18,772 198,050 21.10 11.24 0.6306

Cond-Mat 23,133 93,439 8.078 3.492 0.6334

Gr-Qc 5,242 14,484 5.526 10.54 0.5296

Hep-Th 9,877 25,973 5.259 5.324 0.4714

Road

Networks

Road-BEL 1,441,295 1,549,970 2.143 0.014 0.0017

Road-CA 1,965,206 2,766,607 2.816 0.014 0.0464

Road-PA 1,088,092 1,541,898 2.834 0.026 0.0465

Road-TX 1,379,917 1,921,660 2.785 0.020 0.0470

Biological

Networks

Bio-Dmela 7,393 25,569 6.917 9.356 0.0119

Bio-Grid-Human 9,527 62,364 13.09 13.74 0.1094

Bio-Grid-Yeast 5,870 313,890 106.9 177.2 0.0516

Human-Brain 177,600 15,669,036 176.4 9.910 0.4580

(6) MySpace [40]: a social network having a significant influence

on pop culture and music.

(7) Orkut [19]: was a social networking website owned and oper-

ated by Google, shutdown in 2014.

(8) YouTube [19]: a video-sharing site with a social network.

CollaborationNetworks:We include four collaboration networks

from arXiv.org, which include scientific collaborations between au-

thors with different scientific interests. In a collaboration network,

an undirected edge between nodes i and j exists, if authors i and j
have co-authored at least one paper.

(9) Astro-Ph [19]: Astro physics.

(10) Cond-Mat [19]: Condense matter physics.

(11) Gr-Qc [19]: General relativity and quantum cosmology.

(12) Hep-Th [19]: High energy physics theory.

RoadNetworks: We include four road networks. In road networks,

nodes are intersections/endpoints and undirected edges are the

roads connecting these intersections/road endpoints.

(13) Road-BEL [19]: the OpenStreetMap road network of Belgium.

(14) Road-CA [19]: the road network of California.

(15) Road-PA [19]: the road network of Pennsylvania.

(16) Road-TX [19]: the road network of Texas.

Biological Networks: We include four biological networks.

(17) Bio-Dmela [28]: a protein-protein interaction (PPI) network.

(18) Bio-Grid-Human[28]: a PPI network.
(19) Bio-Grid-Yeast[28]: a PPI network.
(20) Human-Brain [28]: the network of human brain.

5.2.2 Spectral Points of Real-World Networks. Figure 4 plots the
spectral points of real-world networks. We observe the following

for spectral moments of networks from different categories.
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Figure 4: Spectral Points of Real-World Networks. Here, ∗’s
are social networks, ⋄’s are collaboration networks, □’s are
road networks, and +’s are biological networks.

Social Networks. Social networks are often weakly scale free [5]

with a log-normal degree distribution [1, 11] and exhibit a core-

periphery structure [4, 39]. Hence, social networks have a rela-

tively large degree variance, which makes the valuem2 generally

smaller than that of road networks and collaboration networks. In

general, social networks have relatively small spectral moments,

which shows they have better global connectivity. This observation

accords to the fact that social networks exhibit the small-world

phenomenon [21, 35] (e.g. in May 2011 the average path length

between individuals in the Facebook graph was 4.7 [33]).

Collaboration Networks. Compared to networks from other cat-

egories, collaboration networks have greaterm3 values as the their

clustering coefficient is much higher.

Road Networks. Compared to other categories, road networks

have (1) a small degree variance, as often not many roads intersect

at the same point; (2) more squares, as many parts of road networks

resemble rectangular grids; (3) relatively low clustering coefficient,

as triangles are uncommon. Due to these properties, road networks

have largem2 andm4 values, but smallm3 values.

Biological Networks. Biological networks are often strongly scale
free with a power-law degree distribution [15, 37] and a core-

periphery structure [20]. In general, they share similar patterns

with social networks.

5.3 Error Bound on Truncated Moments
Here, we provide an error bound on using the truncated spectral

moments to represent a graph. We discuss the problem from two

views: (I) the spectral distribution and (II) the network structure.

I. Spectral Distribution. Truncated spectral moments have been

used to approximate the spectral density [8, 9]. Here, we provide

a theoretical error bound on the maximum possible difference be-

tween the spectral distribution of two graphs that have the same

truncated moments, i.e., worst-case scenario.

Lemma 5.2. Given two graphs G1 and G2 with respective spectral
density function p1,p2 of their random-walk transition matrices P1
and P2, ifG1 andG2 have the same spectral points (m2,m3,m4), then
the Wasserstein distanceW1(p1,p2) is upper bounded by π

4
.

a

b

c d

e

Case 1:

Pentagon

a

b

c d

Case 2:

Travel to a Triangle

d

a

b c

Case 3:

In a Triangle

Figure 5: Structures related to them5.

Proof. As we have discussed, both p1 and p2 are supported on

[0, 1]. Asm1 = 0,p1 andp2 share the same first four moments. Based

on Theorem 3 of [30],W1(p1,p2) ≤
π
4
+34

∑
4

ℓ=1 |mℓ−mℓ | =
π
4
. □

Lemma 5.2 holds in the worst-case sense, as the first few mo-

ments can be good enough to determine the distribution with high

accuracy. When one approximates the spectral density with the

kernel polynomial method, only a few moments are needed by

using smoothing techniques as the spectrum approximation error

will decay exponentially [9, 31]. The empirical studies also show

that recovery of spectrum of real-world networks using truncated

moments performs much better than the theory would suggest [8].

II. Network Structure. As mentioned,mℓ represents the return

probability of an ℓ-step random walk. We notice that a long closed

walk (e.g. k ≥ 5) can be a cycle of length k , but in more cases the

closed walk is composed of multiple short closed walks. Let us see

the cases of k = 5 in Figure 5. There are three cases which lead to a

closed walk of length 5. Case 1: the starting node a is in a pentagon,

so the pentagon will provide two closed walks of length 5; Case

2: The starting node a travels to b which is in a triangle, then b
takes a closed walk of length 3, and finally, goes back to a; Case
3: a is in a triangle so it can have a close walk of length 3, and

during this walk any node (a,b or c) takes a closed walk of 2. In

both Cases 2 and 3, the closed walk of length 5 is decomposed into

a closed walk of 2 and a closed walk of 3. In real-world networks,

we find that most long closed walks belong to the latter situation,

as higher-order structures like a long cycle is less frequent than

lower-order structures such as edges, wedges, or triangles [22]. As

m2,m3,m4 can capture these short closed walks, we basically only

lose the information on uncommon structures like long cycles.

5.4 Time Complexity
In this paper, we compute the accurate estimates of the low-order

moments with the ApproxSpectralMoment algorithm proposed

by [8]. The algorithm estimates the moments by simulating many

random walks and computes the proportion of closed walks. To

compute the ℓ-th spectral moment by simulating s random walks, it

takes O(sℓ) time. In our case, ℓ ≤ 4 and following the empirical re-

sults by [8], we set s = 10, 000. For all networks used in our datasets,

it takes only a few seconds to compute the three spectral moments.

The Python code for computing moments has been released.
1

6 SPECTRAL NETWORK IDENTIFICATION
In Section 5, we showed how networks can be represented and

visualized using their truncated moments. Here, we demonstrate

that spectral moments can be used for network identification [16], a

problem which we will briefly review next.

1
https://github.com/shengminjin/EstimateSpectralMoments
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6.1 Network Identification
Network identification [16] aims to identify the source from which

an anonymized graph is sampled, to find the identity of a subgraph.

Network identification can be formulated as follows: given a set of

networks N = {N1,N2, . . . ,Nn }, and a subgraph G sampled from

Ni ∈ N using a sampling strategy S , we want to identifyG , i.e., the
network Ni from which G is sampled.

Based on the perturbation analysis of spectral density [9], the

Wasserstein distance between the spectral density of a graph and

the perturbed graph is bounded by the Frobenius norm of the per-

turbation. More specifically, suppose Ã = A + ∆A is the perturbed

graph matrix with spectral density µ̃, thenW1(µ, µ̃) ≤ ||∆A| |F . As
one can view a subgraph as a result of a perturbation (removing

nodes/edges) on the whole graph, the spectral moments of the sub-

graphs and the whole graphs should also be close. Therefore, we use

spectral moments for network identification as they can capture the

similarity between subgraphs and the whole graph. We use spectral

moments as features directly to find the graph identities. Before

detailing the experiments, we present the experimental setup.

6.2 Experimental Setup
From each real-world network, we sample many subgraphs repre-

senting graphs G which are to be identified. We vary the sampling

proportion from 10% to 99% and sample using random node sam-

pling. For each proportion, we sample two subgraphs. Hence, for

each network we have 90 × 2 = 180 subgraphs, and for twenty

networks, we have 180 × 20 = 3, 600 samples to be identified.

6.3 Experiments
We use the spectral moments of each subgraph as its features and

the name of the source networks as the class label, to train a mul-

ticlass classification model. We use 10-fold cross validation, and

decision tree, SVM, k-NN and bagged trees as our classifiers. For

spectral moments, we consider using the three spectral moments

(m2,m3,m4) and using the first 20 spectral moments. For evaluation,

we provide the following two baselines for comparison.

(1) Top Eigenvalues. Top eigenvalues have been used to study

graph similarity [18]. We compute the top 5 eigenvalues of each

sample as features for classification.

(2) Random Prediction. A simple random prediction, so the accu-

racy will be 1/n where n is the number of networks.

We evaluate the methods for all networks and within each net-

work category and report the performance for the best classifier in

Table 3. The results show that spectral moments significantly out-

perform the baselines. The first 20 spectral moments perform best,

but using three spectral moments one does not lose much predictive

power, which confirms our discussion that the truncated spectral

moments can keep most information on the spectral distribution

and network structure of real-world networks.

7 ADDITIONAL RELATEDWORK
Additionally, our work has links to the following areas:

I. 3DNetwork Embedding. Jin et al. [17] propose a 3D embedding

method using Stochastic Kronecker Graph model. Their embedding

method can capture the core-periphery structure of a network, and

Table 3: Network Identification with Spectral Moments
Type Three First 20 Baselines

Spectral Moments Spectral Moments Top Eigenvalues Random
Prediction (1/n)

All
Networks 82.0% 86.5% 62.4% 5%

Social
Networks 95.5% 96.1% 74.8% 12.5%

Collaboration
Networks 94.8% 97.1% 70.9% 25%

Road
Networks 51.2% 53.3% 44.9% 25%

Biological
Networks 99.7% 99.6% 90.4% 25%

the embedding values can quantify the core strength of the network

to some extent. Compared to their approach, spectral points carry

further information on the network structure and properties.

II. Spectral Moments of other Associated Matrices. Preciado
and colleagues [26, 27] have provided detailed analysis on the spec-

tral moments of the combinatorial Laplacian matrix (D − A) of
graphs to connect the spectral moments with network structure.

Here, we choose not to use the spectral moments of combinatorial

Laplacian as the bounds on its eigenvalues are related to the size of

the graph, and we prefer using the random walk transition matrix

to have a compact embedding space.

III. Spectral Embedding. Recently, spectral information is used

for different network embeddingmethods. One example is FGSD [34],

which proposed a family of graph spectral distances that embeds the

information as histograms and computes histograms on the bihar-

monic kernel of the graph. Another example is NetLSD [32], which

computes and samples the heat or wave trace over the eigenvalues

of a graph’s normalized Laplacian to build embeddings. By using

the spectral information, these embeddings are more focused on the

predictive power, but are still relatively difficult to be interpreted.

8 CONCLUSION AND DISCUSSION
In this paper, we introduce an approach tomap all possible networks

to a bounded 3D embedding space using the spectral moments of

networks. We propose a 3D network embedding method, the Spec-
tral Point, by using the truncated spectral moments of the network.

We prove that spectral moments are closely related to network

structure and various network properties. To the best of our knowl-

edge, we are the first to study relationship between the spectral

moments of the random walk transition matrix and network struc-

ture. We prove that the spectral moments are bounded by network

properties such as the degree distribution and the global clustering

coefficient, and spectral moments can be used as a measure for

global connectivity. We prove the relationship between the spectral

moments of the network and those of its connected components.

We derive the spectral points of various types of graphs such as

complete graphs, cycles, star graphs, complete bipartite graphs,

and wheels. For k-regular graphs, we prove each dimension of the

spectral points are bounded by
1

k . We analyze the spectral points

of real-world graphs and show that their structure and properties

identified in past literature are often captured by spectral points.

Finally, we demonstrate that spectral moments can be used for

network identification, i.e., to identify the source of an anonymized

graph. The result shows that the spectral moments outperform the

baselines and the truncated spectral moments do not lose much

predictive power. We believe the spectral embedding space (i.e., the
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Figure 6: Feasible Spectral Embedding Space

spectral zoo) can help obtain a better and quick understanding of

the structure and properties of a network. Here, we further discuss

some properties of the spectral embedding space and future work.

Feasible Embedding Space for Spectral Moments. By defini-

tion,m2,m3 andm4 are between 0 and 1. Hence, the whole spectral

embedding space is a 1 × 1 × 1 cube. However, not the whole

cube is the feasible embedding space for networks due to the

intrinsic relationship between these moments. For any random

variable X with moments mj = E(X
j ), m3 ≤

√
m4m2 −m3

2
and

m3 ≤ ( 4

27
)1/4m

3/4

4
[25]. Therefore, the embedding space which vio-

lates these conditions should be void. We plot the feasible spectral

embedding space as the blue area in Figure 6.

Future Work. Our future work includes investigating the follow-

ing: (1) Graph clustering and partitioning. In Section 4.4, we see

the relationship between the spectral moments of a graph and its

connected components, which indicates that one may define graph

cut from the view of spectral moments, e.g. to maximize the spec-

tral moments of the connected components. (2) Network modeling.

Network modeling aims to model the behavior of real-world net-

works (e.g. how a real-world network forms and evolves). The most

commonly used measurements to evaluate network models are: de-

gree distribution, clustering coefficient and average path length. As

spectral moments are closely connected to these network properties

(average path length is related to the network connectivity), we

consider modeling a network from the view of spectral moments.
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